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1 DISCRETIZED OPERATORS
Gradient. We construct a discrete gradient using the moving least-

squares approach from [Liang and Zhao 2013]. We go through each

step to show how to derive the gradient starting with the general

formula from Riemannian geometry and simplify terms whenever

the setting allows us to do so.

We locally fit a surface patch to estimate the metric at each point

𝑝 using moving least-squares [Nealen 2004]. The surface patch

Γ : Ω ⊂ R2 → R3, often called a Monge patch, describes the surface

as a quadratic polynomial ℎ(𝑢, 𝑣) over the tangent plane at 𝑝 and is

given by

Γ(𝑢, 𝑣) = [𝑢, 𝑣, ℎ(𝑢, 𝑣)]⊺ , (1)

where 𝑢, 𝑣 denote local coordinates in the tangent plane. Since the

surface patch should interpolate the point 𝑝 and the surface normal

of the patch at 𝑝 should agree with the normal of the tangent plane

at 𝑝 , the constant and linear terms of ℎ(𝑢, 𝑣) vanish

ℎ(𝑢, 𝑣) = 𝛼1𝑢
2 + 𝛼2𝑢𝑣 + 𝛼3𝑣

2, (2)

ℎ𝑢 = 2𝛼1𝑢 + 𝛼2𝑣, (3)

ℎ𝑣 = 𝛼2𝑢 + 2𝛼3𝑣 . (4)

The metric is given as

𝑔 =

[
1 + ℎ2𝑢 ℎ𝑢ℎ𝑣
ℎ𝑢ℎ𝑣 1 + ℎ2𝑣

]
. (5)

And its determinant as

|𝑔| = (1 + ℎ2𝑢 ) (1 + ℎ2𝑣) − (ℎ𝑢ℎ𝑣)2 (6)

= 1 + ℎ2𝑢 + ℎ2𝑣 + ℎ2𝑢ℎ2𝑣 − ℎ2𝑢ℎ
2

𝑣 (7)

= 1 + ℎ2𝑢 + ℎ2𝑣 . (8)

Finally, the inverse of 𝑔 can be computed as

𝑔−1 =
1

|𝑔|

[
1 + ℎ2𝑣 −ℎ𝑢ℎ𝑣
−ℎ𝑢ℎ𝑣 1 + ℎ2𝑢

]
. (9)
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Conveniently, at the center point ℎ𝑢 (0, 0) = ℎ𝑣 (0, 0) = 0 and thus

𝑔0,0 = 𝑔−1
0,0 = I, |𝑔0,0 | = 1. (10)

To obtain nodes for the fitting of the quadratic polynomial, we

project the points from a local neighborhood of 𝑝 onto the tangent

plane. The gradient of a function 𝑋 on the surface is given as

grad𝑋 =
[
𝜕𝑢Γ 𝜕𝑣Γ

]
𝑔−1

[
𝜕𝑢𝑋

𝜕𝑣𝑋

]
, (11)

where 𝜕𝑢 = 𝜕/𝜕𝑢 is a shorthand for partial derivatives. Plugging

Equation 10 into Equation 11, we get

grad𝑋 = 𝜕𝑢𝑋𝜕𝑢Γ + 𝜕𝑣𝑋𝜕𝑣Γ. (12)

𝜕𝑢Γ and 𝜕𝑣Γ are exactly the basis vectors at point 𝑝 . Thus, the co-

efficients of the resulting vectors are given by 𝜕𝑢𝑋 and 𝜕𝑣𝑋 . The

function 𝑋 is given by function values at the points. To estimate the

partial derivatives of𝑋 at a point 𝑝 , we locally fit a quadratic polyno-

mial using the same approach as for fitting a quadratic polynomial

to the surface and compute its partial derivatives. As for the fitting

of the surface patch, we project the points in a local neighborhood

to the tangent plane and use the function values as nodes for fitting

the quadratic polynomial [Nealen 2004].

Discrete Divergence. The divergence, including the metric compo-

nents [O’Neill 1983], on the surface patch Γ is

div𝑉 = 𝜕𝑢𝑉𝑢 + 𝜕𝑣𝑉𝑣 +𝑉𝑢 𝜕𝑢 log

√︁
|𝑔| +𝑉𝑣𝜕𝑣 log

√︁
|𝑔|, (13)

where |𝑔| denotes the determinant of the metric. At the origin, the

metric of our surface patch is the identity and the derivatives of the

metric at this point vanish. Hence, divergence is given by

div𝑉 = 𝜕𝑢𝑉𝑢 + 𝜕𝑣𝑉𝑣 . (14)

To compute the partial derivatives 𝜕𝑢𝑉𝑢 , 𝜕𝑣𝑉𝑣 at 𝑝𝑖 , we require

the coefficients of the vector field at neighboring points {𝑝 𝑗 | 𝑗 ∈
N𝑖 }. However, different basis vectors are used at different points.

Therefore, we need to map from the basis vectors at 𝑝 𝑗 to those of 𝑝𝑖 .

While doing so, we account for metric distortion by Γ. The following
equation requires a bit more notation to distinguish between vectors

at different points. We denote the coordinates of 𝑝 𝑗 in the tangent

space of 𝑝𝑖 as (𝑢 𝑗 , 𝑣 𝑗 ), the metric of Γ at 𝑝 𝑗 as 𝑔𝑢 𝑗 ,𝑣𝑗 , the coefficients

of a tangent vector at 𝑝 𝑗 as (𝛼𝑢𝑗 , 𝛼
𝑣
𝑗
), and the basis vectors at 𝑝 𝑗 as

e𝑢
𝑗
, e𝑣

𝑗
. The coefficients of a vector at 𝑝 𝑗 in 𝑝𝑖 ’s parameter domain

are

𝑔−1𝑢 𝑗 ,𝑣𝑗

[
𝜕𝑢Γ(𝑢 𝑗 , 𝑣 𝑗 ) · e𝑢

𝑗
𝜕𝑢Γ(𝑢 𝑗 , 𝑣 𝑗 ) · e𝑣

𝑗

𝜕𝑣Γ(𝑢 𝑗 , 𝑣 𝑗 ) · e𝑢
𝑗

𝜕𝑣Γ(𝑢 𝑗 , 𝑣 𝑗 ) · e𝑣
𝑗

] [
𝛼𝑢
𝑗

𝛼𝑣
𝑗

]
. (15)

Equation 14 and Equation 15 are combined to form a sparse matrix

D ∈ R𝑁×2𝑁
representing divergence.
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Fig. 1. The two architectures used for classification and segmentation, based on [Wang et al. 2019]. Please refer to Equation 6 and Figure 4 in the main text for
the formulation of each convolution and how the streams are combined.

Fig. 2. Comparison of different convolutions optimized to match the result
of twenty anisotropic diffusion steps on sample image ‘camera’.

2 ARCHITECTURES
We based our architectures on the designs proposed in DGCNN

[Wang et al. 2019]. A schematic overview is presented in Figure 1

and more details are provided in the following paragraphs.

Convolutions. Each convolution, denoted as Conv(𝐶0, . . . ,𝐶𝐿),

learns the function ℎΘ with an MLP that has 𝐿 layers. Each layer in

the MLP consists of a linear layer with 𝐶𝑖 input- and 𝐶𝑖+1 output
channels, batch normalization [Ioffe and Szegedy 2015], and a non-

linearity. For scalar features, the non-linearity is a leaky ReLU with

slope 0.2 and for vector features a ReLU. We denote MLPs applied

per point as MLP(𝐶0, . . . ,𝐶𝐿).

Classification network. The classification network has four convo-

lution blocks: Conv(3, 64), Conv(64, 64), Conv(64, 128), Conv(128,

256). Each scalar convolution is interspersed with connections to-

and from the vector stream, which mirrors the number of parame-

ters in its vector convolutions. The output of each scalar convolution

is concatenated into a feature vector of 512 features and transformed

to 1024 features using an MLP. We return a global embedding by

taking both the maximum and mean of the features over all points.

These are concatenated and fed to a task-specific head: MLP(2048,

512, 256, 𝐶), where 𝐶 is the number of classes in the dataset. This

final MLP has dropout [Srivastava et al. 2014] set to 0.5 in between

the layers. During training, we optimize a smoothed cross-entropy

loss.

Fig. 3. Comparison of a ResNet with DeltaConv optimized to match the
result of varying anisotropic diffusion steps.

Segmentation network. The segmentation network uses three con-

volutions: Conv(𝐶𝑖𝑛 , 64, 64), Conv(64, 128, 128), Conv(128, 256, 256).

Again, the scalar convolutions are interspersed with connections

to- and from the vector stream. The output of each convolution is

concatenated into a vector of 448 features per point and transformed

to 1024 features with a global MLP. These features are pooled with

maximum pooling. This embedding and an embedding of a one-hot

encoding of the shape category is concatenated to the output of

the convolutions at each point and fed to the task-specific head

for segmentation: MLP(1536, 256, 256, 128, 𝐶). During training, we

optimize a cross-entropy loss.

Table 1. Results on human part segmentation [Maron et al. 2017].

Method Accuracy

PointNet++ [Qi et al. 2017] 90.8

MDGCNN [Poulenard and Ovsjanikov 2018] 88.6

DGCNN [Wang et al. 2019] 89.7

SNGC [Haim et al. 2019] 91.0

HSN [Wiersma et al. 2020] 91.1

MeshWalker [Lahav and Tal 2020] 92.7
CGConv [Yang et al. 2021] 89.9

FC [Mitchel et al. 2021] 92.5

DiffusionNet - xyz [Sharp et al. 2021] 90.6

DiffusionNet - hks [Sharp et al. 2021] 91.7

DeltaNet - xyz 92.2
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Table 2. Per-category breakdown of part segmentation results on ShapeNet part dataset. Metric is mIoU(%) on points.

Mean aero bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table

inst. mIoU phone board

# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

PointNet++ 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

PointCNN 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0

DGCNN 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

KPConv deform 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6

KPConv rigid 86.2 83.8 86.1 88.2 81.6 91.0 80.1 92.1 87.8 82.2 96.2 77.9 95.7 86.8 65.3 81.7 83.6

GDANet 86.5 84.2 88.0 90.6 80.2 90.7 82.0 91.9 88.5 82.7 96.1 75.8 95.7 83.9 62.9 83.1 84.4
PointTransformer 86.6 - - - - - - - - - - - - - - - -

PointVoxelTransformer 86.5 85.1 82.8 88.3 81.5 92.2 72.5 91.0 88.9 85.6 95.4 76.2 94.7 84.2 65.0 75.3 81.7

CurveNet 86.8 85.1 84.1 89.4 80.8 91.9 75.2 91.8 88.7 86.3 96.3 72.8 95.4 82.7 59.8 78.5 84.1

DeltaNet (ours) 86.6 84.9 82.8 89.1 81.3 91.9 79.7 92.2 88.6 85.5 96.7 77.2 95.8 83.0 61.1 77.5 83.1

Delta-U-ResNet (ours) 86.9 85.3 88.1 88.6 81.4 91.8 78.4 92.0 89.3 85.6 96.1 76.4 95.9 82.7 65.0 76.6 84.1

U-ResNet architecture The U-ResNet architecture follows the de-
sign proposed in KPFCNN [Thomas et al. 2019] (Figure 9 of the

supplementary material in [Thomas et al. 2019]). This network con-

sists of an encoder that operates on four scales and a decoder that

progressively upsamples the features to the original resolution. In

each scale of the encoder, there are two ResNet blocks with a bottle-

neck. In KPFCNN, the first ResNet block uses strided convolutions,

which we replace with pooling followed by a regular ResNet block.

Each scale, we subsample to 1/4 points and increase the number of

features by two. In the first layer, we use 64 features. We add two

additional ResNet blocks with 128 output features after the decoder,

as this was shown to be beneficial in CurveNet [Xiang et al. 2021].

We do not use the other changes introduced by CurveNet, such

as skip attention in the decoder or squeeze-excitation in the task-

specific head. Each convolution block is replaced by a DeltaConv

block, which maintains a vector stream in the first three scales and

in the final two ResNet blocks. During pooling, scalar features are

max-pooled and vector features are averaged with parallel transport

to the coordinate system of the sampled point [Wiersma et al. 2020].

3 ADDITIONAL RESULTS AND VISUALIZATIONS

3.1 Visualizations
The anisotropic diffusion experiment was repeated for another input

image with 20 anisotropic diffusion steps (Figure 2) and with varying

anisotropic diffusion steps (Figure 3), showing that a DeltaConv

network can approximate anisotropic diffusion for varying diffusion

times.

3.2 ShapeNet
The per-category breakdown of results for ShapeNet are listed in

Table 2.

3.3 Human Shape Segmentation
We trained a variant of the simple single-scale DeltaNet (eight lay-

ers with each 128 channels) to predict part annotations on the hu-

man body dataset proposed by Maron et al. [2017]. This training

set is composed of meshes from FAUST (100 shapes) [Bogo et al.

2014], SCAPE (71 shapes) [Anguelov et al. 2005], Adobe Mixamo

(41 shapes) [Adobe 2016], and MIT (169 shapes) [Vlasic et al. 2008].

SHREC07 (18 shapes) is used for testing. Each dataset contains hu-

man bodies in different styles and poses, e.g., realistic, cartoony,

dynamic. We convert the dataset into a point cloud dataset by uni-

formly sampling 8𝑁 points from the faces and downsampling these

to 𝑁 points with FPS. We set 𝑁 = 1024, similar to the experiments

in Wiersma et al. [2020], 𝑘 = 20 and 𝜆 = 0.001, similar to the other

experiments. We normalize the area of the shape before sampling

points and augment the input to the network with random rotations

around the up-direction, a random scale between 0.8 and 1.25, and

a random translation of 0.1 points. The network is optimized with

Adam [Kingma and Ba 2015] for 50 epochs with an initial learning

rate of 0.01. The results are listed in Table 1. This experiment shows

DeltaConv’s effectiveness on a deformable shape class and allows

us to compare the results to those of other intrinsic (mesh) convolu-

tions. This comparison has its limits, as most of the listed methods

are trained on meshes instead of point clouds. Nonetheless, we find

that DeltaConv is in line with state-of-the-art approaches, with only

raw xyz coordinates as input.
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