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Who are you?
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• Provide a ‘map’ of deep learning on 3D shapes

• Outcome
• Applying deep learning to 3D tasks

• Developing deep learning techniques for 3D tasks

• Audience
• Some familiarity with optimization or

machine learning

Goal

SGP 2025 Graduate School - Ruben Wiersma 3



Why are we interested?
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Cup
Handle

Plate

coffeecup
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S3DIS
[Armeni et al. 2017]
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Understanding and Improving Features Learned in Deep Functional Maps, Attaiki and Ovsjanikov (2023)
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Automated morphological phenotyping […], O. Thomas et al. (2023)
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Mesh Neural Networks for SE(3)-Equivariant Hemodynamics Estimation of the Artery Wall, Suk et al. (2022)
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Fully Convolutional Graph Neural Networks for Parametric Virtual Try-On, Vidaurre et al. (2020)



• Classification

• Segmentation

• Registration, correspondence

• Surface reconstruction

• Speeding up classical geometry tasks (i.e., smart lookup table)

• Generative modeling

Why are we interested?
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What’s the difference?

Regular grid

Flat domain

Consistent 
coordinates

Irregular sampling

Curved domain

Local coordinates 
(charts)
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Chapter 1: Basics
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Deep learning is a machine learning method
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“Lamp”“Chair”“Car”

“Classic” approaches

Algorithm



Deep learning is a machine learning method
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“Lamp”

“Chair”

“Car”

Untrained Model

“Chair”

Machine learning

Data

Training Trained Model



Deep learning is a machine learning method
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fθ*(x) = yTraining

Machine learning

x1

y1
x2

y2

x2

y3

x'

y'

fθ(x) = y

Data



Machine learning basics
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𝜃∗ = argmin𝜃 

𝑖

𝑁

𝑓𝜃 𝑥𝑖 − 𝑦𝑖 2
2

fθ*(x) = y

x'

y'



Deep learning basics
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𝜃∗ = argmin𝜃 

𝑖

𝑁

𝑓𝜃 𝑥𝑖 − 𝑦𝑖 2
2

LossTraining

• fθ(x) is non-linear → numerical optimization

• θ is high-dimensional → gradient descent (instead of higher order methods)

• N  is large → stochastic gradient descent (only a few x, y pairs at a time)

Model 𝜃 are the unknowns, not 𝑥



Characterization of deep learning
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Data Model Optimizer Hardware

Large datasets Non-linear, layered Gradient Descent GPUs

Backpropagation

End-to-end

High # parameters

‘Philosophy’: Scaling (data, compute) beats algorithmic complexity



Is deep learning all you need?
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Data Model Optimizer Hardware

Small dataset Non-linear, layered Gradient Descent GPUs

Backpropagation

End-to-end

High # parameters

‘Philosophy’: Scaling (data, compute) beats algorithmic complexity

Do you really need the complexity?



Is deep learning all you need?
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Data Model Optimizer Hardware

Small dataset Linear model Gradient Descent GPUs

Backpropagation

‘Philosophy’: Scaling (data, compute) beats algorithmic complexity

Better optimizers are available

Tip: Numerical Algorithms (Solomon)



“It’s all about the data” – Alexei Efros
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Data Model Optimizer Hardware

Large datasets kNN GPUs

‘Philosophy’: Scaling (data, compute) beats algorithmic complexity

e.g., https://www.youtube.com/watch?v=M1VHu1d4sGQ 

https://www.youtube.com/watch?v=M1VHu1d4sGQ


Characterization of deep learning
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Data Model Optimizer Hardware

Large datasets Non-linear, layered Gradient Descent GPUs

Backpropagation

End-to-end

High # parameters

‘Philosophy’: Scaling (data, compute) beats algorithmic complexity



• MLP – Multi-layer perceptron
• The Perceptron: A Probabilistic Model For Information Storage And Organization in the Brain – Rosenblatt (1958)

• CNN – Convolutional Neural Network
• Gradient-based learning applied to document recognition – Lecun et al. (1998)

• Transformer (Attention)
• Attention Is All You Need – Vaswani et al. (2017), attention was around before that

Typical models
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Multi-Layer Perceptron (geometric perspective)
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→ Separate these points

𝑛

d y = 1

y = -1

• Distance to line/plane
Ԧ𝑥 ⋅ 𝑛 − 𝑑

• Step function
𝑦 = 𝜎( Ԧ𝑥 ⋅ 𝑛 − 𝑑)

https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-9689331ba092



Multi-Layer Perceptron (geometric perspective)
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→ Separate these points

𝑤

b y = 1

y = -1

• Distance to line/plane
Ԧ𝑥 ⋅ 𝑤 − 𝑑

• Step function
𝑦 = 𝜎 Ԧ𝑥 ⋅ 𝑤 − 𝑑

• Weights, biases

• 𝜎 activation function
• Non-linear!

𝑤𝑇 Ԧ𝑥 + 𝑏

𝑦 = 𝜎(𝑤𝑇 Ԧ𝑥 + 𝑏)



Multi-Layer Perceptron
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y = 1

y = -1

→ Multiple outputs?

Ԧ𝑦 = 𝜎(W Ԧ𝑥 + 𝑏)

→ Not linearly separable?

Ԧ𝑦 = 𝜎(⋯ 𝜎 W2 𝜎 W1 Ԧ𝑥 + 𝑏1 + 𝑏2 + ⋯ )

Hidden layers

𝑦 = 𝜎(𝑤𝑇 Ԧ𝑥 + 𝑏)

“Channels”

“Layers”



• Examples in 2D, but Ԧ𝑥 can be of any dimension

• Interpretation: cutting up space with halfspaces

• “Multilayer Feedforward Networks [MLPs] are Universal Approximators”
• Hornik, Stinchcombe and White (1989)

• Non-linearity is necessary!

• Compare, e.g., Fourier transform

• Higher complexity, more risk of overfitting

Multi-Layer Perceptron Notes
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MLP on images
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fθ*(x) = y

“A”



MLP on images
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fθ*(x) = y

“A”

Ԧ𝑥



• Problem?
• Not efficient ( Ԧ𝑥 is of dimension width*height)

• Patterns can be anywhere in the image

MLP on images
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fθ*(x) = y

“A”

Every point is an image

xi are the pixel values

• Stack all pixel values, feed into MLP



Convolutional Neural Network

37

Optimize kernel weights

+ Weight sharing (efficient)
+ Translation invariance
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Schematics
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Schematics

39

“Channels”



Convolutional Neural Networks
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https://medium.com/data-science/u-net-explained-understanding-its-image-segmentation-architecture-56e4842e313a

Stack convolutions

Pooling (taking local maxima)
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Hierarchies of Features in CNNs

Feature Visualization, Olah, Mordvintsev, Schubert (2017) – https://distill.pub/2017/feature-visualization/



Convolutional Neural Networks Notes
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• Interpretation: MLP on patches

• Consistent pixel grid helps
• Orientation

• Maps to hardware well

• Downside (?) Template is fixed



Limitation of Convolution Kernels
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Kernel values based on location

Can we adapt to the signal?



Limitation of Convolution Kernels
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𝑥𝑖
′  = 

𝑗∈𝒩𝑖

𝑔 𝑝𝑗 − 𝑝𝑖 𝑥𝑗𝑖

𝑗 Gaussian kernel 𝑔

Based on distance
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Denoising with Gaussian filter vs. Bilateral filter

𝑥𝑖
′  = 

𝑗∈𝒩𝑖

𝑔 𝑝𝑗 − 𝑝𝑖 𝑥𝑗 𝑥𝑖
′  = 

𝑗=0

𝑁

𝑓 𝑥𝑗 − 𝑥𝑖 𝑔( 𝑝𝑗 − 𝑝𝑖 )𝑥𝑗  

Look at pixel value as well

Isotropic blurring Preserves features



𝑥𝑖
′  = 

𝑗=0

𝑁

𝑓 𝑥𝑗 − 𝑥𝑖 𝑔( 𝑝𝑗 − 𝑝𝑖 )𝑥𝑗  

• Replace distance with cosine similarity

𝑥’𝑖  = 

𝑗=0

𝑁

𝑥𝑗
𝑇𝑥𝑖 𝑥𝑗  

• Add flexibility with weight matrices and make sure weight ‘behaves’
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Self-attention (Transformers)

𝑥𝑖
′  = 

𝑗=0

𝑁

softmax W𝑞𝑥𝑗
𝑇

W𝑘𝑥𝑖 W𝑣𝑥𝑗  



𝑥𝑖
′  = 

𝑗=0

𝑁

softmax W𝑞𝑥𝑗
𝑇

W𝑘𝑥𝑖 W𝑣𝑥𝑗  
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Self-attention (Transformers)

KeyQuery Value
k

q, v



• Transformers combine these blocks

• Positional encoding based on 𝑝𝑗 − 𝑝𝑖

• Pro: Highly flexible, very effective (LLMs, Vision Transformers, etc.)

• Pro: ‘Global’ connections (vs. U-Net)

• Con: Computationally expensive (compared to CNN)
• Solutions: work at coarse scale OR only apply locally
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Self-attention (Transformers)

𝑥𝑖
′  = 

𝑗=0

𝑁

softmax W𝑞𝑥𝑗
𝑇

W𝑘𝑥𝑖 W𝑣𝑥𝑗  



• Multi-Layer Perceptrons (MLP)
• Linear combination, followed by non-linearity, repeated

• Basic building block of Neural Networks

• Convolutional Neural Network (CNN)
• Learn local kernel, convolve

• Weight sharing, translation invariance

• ‘Constructs’ localized features of increasing abstraction

• Transformers
• Learn weights based on feature similarity

• Highly expressive, but expensive; current SOTA for many tasks
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Summary



Chapter 2: 3D Data
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Deep learning for 3D data
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Data Model Optimizer Hardware

Large datasets Layered, deep Gradient Descent GPUs

Backpropagation

End-to-end

High # parameters

‘Philosophy’: Scaling (data, compute) beats algorithmic complexity

3D data



3D Data
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Point cloud MeshVoxels

Based on slides by Klaus Hildebrandt



𝑓: ℝ3 → ℝ

Value > 0 outside shape, < 0 inside

In deep learning

• Use MLP to represent 𝑓

• Rarely used as input to MLP
• Convert to voxels/mesh/point cloud
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What about implicit functions?

< 0 > 00

Based on slides by Olga Sorkine-Hornung



• Set of points in d-dimensional space

𝑃 ∈ ℝ3

Point Cloud
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• ‘Complements’ point cloud
• connectivity and surface given by V, E, F

• Geometry can be on points, edges, etc.

Mesh
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• ShapeNet (meshes, point clouds) – segmentation, classification

• ModelNet40 (meshes) – classification 

• ScanNet (v2, v3) (RGB-D + reconstructions) – segmentation 

• S3DIS (point clouds) – segmentation 

• Thingi10k (meshes) – n/a

• ABC (meshes) – n/a

• Consider ethics, copyright!
• E.g., https://huggingface.co/datasets/allenai/objaverse/discussions/18 

Datasets
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https://huggingface.co/datasets/allenai/objaverse/discussions/18
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More exotic inputs and outputs: simulation

• Input: positions, distance to loops

• Output: tangent vector at each vertex

Mesh Neural Networks for SE(3)-Equivariant Hemodynamics Estimation of the Artery Wall, Suk et al. (2022)
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More exotic inputs and outputs: simulation

• Stage 1
• Input: Garment parameters
• Output: Mesh positions on mean shape

• Optimize topology

• Stage 2
• Input: Mesh positions, target shape parameters
• Output: Smooth mesh positions

• Stage 3
• Input: Smooth mesh positions
• Output: Fine mesh positions (wrinkles, etc.)

Fully Convolutional Graph Neural Networks for Parametric Virtual Try-On, Vidaurre et al. (2020)



• Neural Jacobian Fields
• Input: Per-triangle centroid + global code

• Output: Jacobian matrix

• Model: MLP

• Post-process:
• Restrict Jacobian to tangent space

• Solve Poisson equation for vertex positions
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More exotic inputs and outputs: Jacobians

Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes, Aigerman et al. (2022)



• Unsupervised learning

• For example: auto-encoders

What if I have data, but no labels?
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Z

Encoder Decoder

Models, like CNN or Transformer



• Unsupervised learning

• For example: auto-encoders

What if I have data, but no labels?
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Z

Encoder Decoder



Chapter 3:
3D Deep Learning Models
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Deep learning for 3D data
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Data Model Optimizer Hardware

Large datasets Layered, deep Gradient Descent GPUs

Backpropagation

End-to-end

High # parameters

‘Philosophy’: Scaling (data, compute) beats algorithmic complexity

3D data Models for 3D
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Let’s start simple



MLP
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MLP

“Bunny”

Stack all points?

Which order?



• MLP on each point

• Maximum over all points

PointNet
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Cannot learn from neighborhoods

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, Qi, Su, Mo, Guibas (2016)

𝑦 = max
𝑗∈𝑃

𝑓𝜃(𝑥𝑗)



• MLP on each point

• Maximum over neighborhood
• kNN – homogeneous

• Radius – more robust to sampling
• Geodesic/Euclidean?

• Hierarchies with maximum pooling (like CNN)

PointNet++
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PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space, Qi, Yi, Su, Guibas (2017)

𝑥𝑖
′ = max

𝑗∈𝑁𝑖

𝑓𝜃(𝑥𝑗 , 𝑝𝑗 − 𝑝𝑖)
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Taking a step back



Surface as a graph

• Vertices or points are nodes

69



Surface as a graph

• Vertices or points are nodes

• Edges connect nearby points
(radius graph, k-NN graph)

• For meshes: use mesh edges

• What can meshes help with?
• Geodesic neighborhoods (we know connectivity)

• Encode geometry (e.g., MeshCNN)

70



Message passing
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1. Compute ‘message’ on each node

2. Aggregate messages over edges

https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html

Neural Message Passing for Quantum Chemistry, Gilmer, Schoenholz, Riley, Vinayls, Dahl (2017)



1. Message: MLP on features + relative location

2. Passing: Maximum over neighbors
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PointNet++ as Message Passing

𝑥𝑖
′ = max

𝑗∈𝑁𝑖

𝑓𝜃(𝑥𝑗 , 𝑝𝑗 − 𝑝𝑖)

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space, Qi, Yi, Su, Guibas (2017)



EdgeConv as Message Passing
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1. Message: MLP on ‘relative features’ (edges)

2. Passing: Maximum over neighbors

𝑥𝑖
′ = max

𝑗∈𝑁𝑖

𝑓𝜃(𝑥𝑖 , 𝑥𝑗 − 𝑥𝑖)

Dynamic Graph CNN for Learning on Point Clouds, Wang, Sun, Liu, Sarma, Bronstein, Solomon (2019)



GCN as Message Passing
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1. Message: Linear transformation of features

2. Passing: Weight by degree, average

𝑥𝑖
′ = 𝜎(W0𝑥𝑖 + 

𝑗∈𝑁𝑖

1

𝑐𝑖𝑗
W1𝑥𝑗)

Graph Convolutional Networks, Kipf, Welling (2016)



Laplacian in GCN and EdgeConv

• Laplacian: Sum of second derivatives
• Discrete setting: Difference to average of neighbors

• GCN: graph Laplacian

• EdgeConv

75

𝑥𝑖
′ = max

𝑗∈𝑁𝑖

𝑓𝜃(𝑥𝑖 , 𝑥𝑗 − 𝑥𝑖)

𝑥𝑖
′ = 𝜎(W0𝑥𝑖 + 

𝑗∈𝑁𝑖

1

𝑐𝑖𝑗
W1𝑥𝑗)

Learning to Diffuse

Smoothly

'Sharply’
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More geometry



Why geometry?
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Based on slides by Klaus Hildebrandt



Why geometry?

78DiffusionNet: Discretization Agnostic Learning on Surfaces, Sharp et al. 2022

Mesh quality?



Why geometry?

• Invariances

79



+ Robust to isometric deformations

+ 2D instead of 3D

+ No/less distortion or occlusion

Intrinsic operations can be beneficial

80

Extrinsic
IntrinsicA

B



Why Geometry?

• Invariances within an invariance

81
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Back to CNNs



Single CNN layer with 3x3 filter

83

CNN on a Graph

x0 x1 ...

xi

x4 𝑥4
′ =  𝜎(

𝑖

W𝑖𝑥𝑖)

SGP 2025 Graduate School - Ruben Wiersma



Single CNN layer with 3x3 filter

84

CNN on a Graph

x0 x1 ...

xi

x4

𝑥4
′ =  𝜎(

𝑖

W𝑖𝑥𝑖)

𝑥𝑖
′ = 𝜎(W0𝑥𝑖 + 

𝑗∈𝑁𝑖

1

𝑐𝑖𝑗
W1𝑥𝑗)

Compare with GCN
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CNNs for 3D

• Graph- and point based
• GCN, PointNet++, EdgeConv

• 3D kernel (extrinsic)
• KPConv, MinkowskiNet, SSCN

85

KPConv
[Thomas et al. 2019]

SGP 2025 Graduate School - Ruben Wiersma



CNNs for 3D

• Graph- and point based
• GCN, PointNet++, EdgeConv

• 3D kernel (extrinsic)
• KPConv, MinkowskiNet, SSCN

• 2D kernels on surfaces (intrinsic)
• GCNN, ACNN, MoNet, MDGCNN, HSN
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CNNs for 3D

• Graph- and point based
• GCN, PointNet++, EdgeConv

• 3D kernel (extrinsic)
• KPConv, MinkowskiNet, SSCN

• 2D kernels on surfaces (intrinsic)
• GCNN, ACNN, MoNet, MDGCNN, HSN

• Operator-based (e.g., Laplacian)
• DeltaConv

87SGP 2025 Graduate School - Ruben Wiersma

Anisotropic operator

Scalars

Vectors

grad       co-grad div         curl, norm

Non-linearity
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Transformers



Single CNN layer with 3x3 filter

89

Attention on a Graph

x0 x1 ...

xi

x4 𝑥𝑖
′  = 

𝑗=0

𝑁

softmax W𝑞𝑥𝑗
𝑇

W𝑘𝑥𝑖 W𝑣𝑥𝑗  
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• PointTransformer - Zhao et al. 2021

• Challenge: how to reduce cost?
• Apply on local neighborhoods

• Apply on serialized point clouds
(space-filling curves, v3 2024)

• Challenge: positional encoding
• PointNet++-like positional encoding, MLP(𝑝𝑗  –  𝑝𝑖)

• Rotation invariance?

SGP 2025 Graduate School - Ruben Wiersma 90

Transformers for 3D



• Many approaches, but PointNet++ still seems to work quite well
• Due to tasks/benchmarks?

• Other options often seen
• DGCNN (EdgeConv), PointTransformer v3, Sparse Voxel Convolutions

• Which one to use depends on your task
• Do you expect the network to understand curvature? Maybe not PointNet++/DGCNN?

• Do you want efficiency, simplicity? – Try the simple networks first.

Current state-of-the-art
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• MeshCNN (Hanocka et al. 2019)

• Operates on mesh edges

• Geometric features
• dihedral angle, two inner angles and two edge-length ratios for each face

• DiffusionNet (Sharp et al. 2022)

• Learning to diffuse

• Accelerated in frequency domain (Eigenvectors of Laplacian)

• Robust to discretizations (e.g., mesh → point cloud)
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Methods you should know, but we didn’t cover



• Data augmentation
• Random rotation/translation

• ‘Learn’ the transformation
• Spatial transformer, e.g., in PointNet

• Invariant input features
• Heat-Kernel Signatures (DiffusionNet)
• MeshCNN – Edges, intrinsic features

• Encode features in local frames
• Point difference, normals (translation-invariant)
• Distances (translation-rotation-invariant)

• Rotation-equivariance
• E.g., Tensor Field Networks (Thomas et al. 2018), Spherical Harmonics (Poulenard et al. 2019)
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Rotation invariance, translation invariance?

A Concise and Provably Informative Multi-Scale Signature
Based on Heat Diffusion, Sun, Ovsjanikov, Guibas (2009)

PointNet: Deep Learning on Point Sets for 3D Classification 
and Segmentation, Qi, Su, Mo, Guibas (2016)github.com/nvidia/torch-harmonics



Chapter 4: Hands-on with
PyTorch Geometric
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• Implementation of message-passing paradigm

• Supports many convolution types

• Many helpful utilities

• Alternatives
• Kaolin, PyTorch3D, GraphGym

PyTorch Geometric
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https://pytorch-geometric.readthedocs.io/en/latest/ 

https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/
https://pytorch-geometric.readthedocs.io/en/latest/
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Setting up the environment
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Dataset, loading and visualization
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Model
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Training
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